Теорія:
При діленні одночлена на одночлен:
— діляться їх коефіцієнти;
— діляться степені з однаковими основами (при діленні степенів показники віднімаються).
— діляться їх коефіцієнти;
— діляться степені з однаковими основами (при діленні степенів показники віднімаються).
Приклад:
Приклад 1.
Значення виразу 8x2y6:4xy3 дорівнює...
1) Якщо показник степеня змінної не вказаний, він дорівнює 1:
2) Ділення можна записати у вигляді звичайного дробу:
3) Діляться коефіцієнти і степені з однаковими основами:
4) При діленні степенів показники віднімаються:
5) Члени перемножуються, і виходить результат:
Зверни увагу!
Запам'ятай: показник степеня змінної 1 зазвичай не записується.
Приклад:
Приклад 2.
Значення виразу a4b3:5ab дорівнює...
1) Якщо показник степеня змінної не вказаний, він дорівнює 1 :
2) Коефіцієнти діляться навіть тоді, коли один з них дорівнює 1 :
3) Якщо показник степеня змінної не вказаний, він дорівнює 1 :
4) При діенні степенів показники віднімаються:
5) Члени перемножуються, і виходить результат:
Приклад:
Приклад 3.
Значення виразу −3m6n2:6mn2 дорівнює...
1) Якщо показник степеня змінної не вказаний, він дорівнює 1 :
2) Діляться коефіцієнти і степені з однаковими підставами:
3) При діленні степенів показники віднімаються:
4) Якщо показник степеня дорівнює 0 , то значення степеня дорівнює 1 , тобто, n0=1 :
Немає коментарів:
Дописати коментар
Примітка: лише член цього блогу може опублікувати коментар.